If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1921x^2+8876x=0
a = -1921; b = 8876; c = 0;
Δ = b2-4ac
Δ = 88762-4·(-1921)·0
Δ = 78783376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{78783376}=8876$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8876)-8876}{2*-1921}=\frac{-17752}{-3842} =4+1192/1921 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8876)+8876}{2*-1921}=\frac{0}{-3842} =0 $
| 3(n-1)-2=4(n-4)-(n-11 | | (p^2-2p-3)=0 | | cх^2-6х+3=0уравнение/ | | СХ^2-6x+3=0 | | x+(11)=55 | | 2z+9z=4z-45+2z | | 3x+5=1x-3 | | -1=a(0+3)^2+2 | | 5x³+10x²-15=0 | | X-4x5=3x-2 | | x+x+5=x−3+1 | | 18-11y-16=0 | | v+2=-²(v+4) | | X3(2x-5)+2x=-23 | | 5(x−2)+6=2x+11 | | 10^x=7/10 | | 4b=3b-2 | | 5x-25+3x+5=90 | | 6w+10=-10+4w | | 135(2x-1)=15 | | 24p=2(7+5) | | 135/(2x-1)=15 | | 2h+7-3=20 | | t/6+9=25 | | d+1/9=-4/9 | | X2+6x=2 | | 5+15=c | | 2*2x+4x=56 | | Q+7=3x-2 | | M=9+6x | | P=-3x | | 4(x-2)=A-24 |